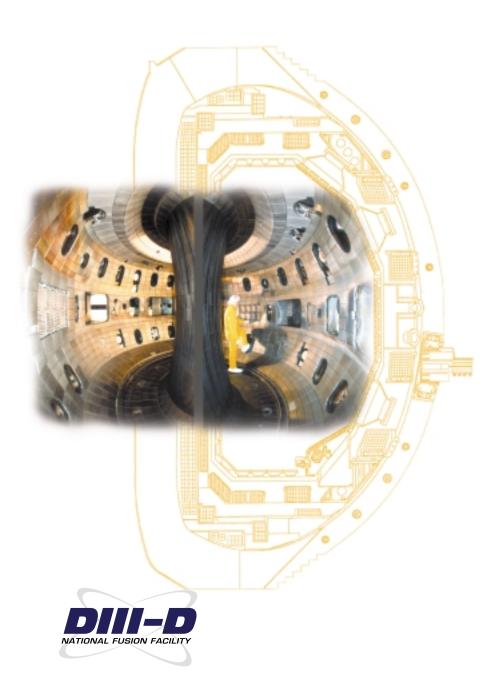
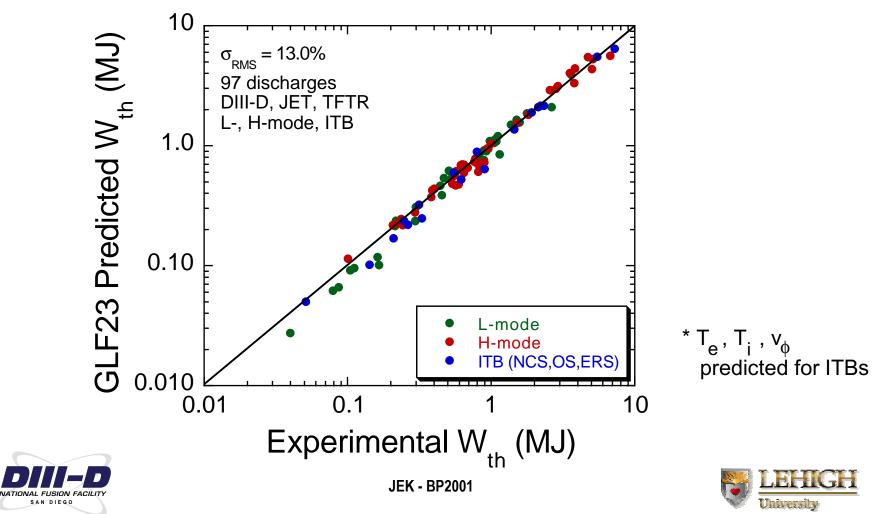
# Burning Plasma Projections Using The GLF23 Transport Model

by J.E. Kinsey\*, R.E. Waltz, G.M. Staebler


\* Lehigh University

Acknowledgements: C. Kessel, D. Meade, G. Hammett

Presented at Burning Plasma Workshop II


May 1, 2001



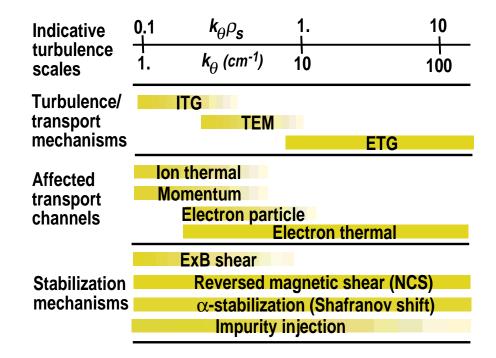


## GLF23 Transport Model With Real Geometry ExB Shear Shows Improved Agreement With L- and H-mode and ITB Profile Database

Statistics computed incremental stored energy (subtracting pedestal region) using exactly same model used for ITB simulations



- GLF23 model has been tested against 5 L- and H-mode C-mod discharges from the ITER Profile Database
- Unlike many other discharges from DIII-D, TFTR, and JET, C-mod operates at much higher densities and is RF heated


| Discharge                            | 126007 | 301009 | 116027 | 214017 | 116024 |
|--------------------------------------|--------|--------|--------|--------|--------|
| Туре                                 | L-     | L-     | H-     | H-     | H-     |
| R (m)                                | 0.68   | 0.68   | 0.68   | 0.68   | 0.68   |
| a (m)                                | 0.22   | 0.22   | 0.22   | 0.22   | 0.22   |
| κ                                    | 1.64   | 1.60   | 1.65   | 1.60   | 1.65   |
| δ                                    | 0.41   | 0.45   | 0.41   | 0.40   | 0.42   |
| $B_{T}(T)$                           | 5.24   | 5.33   | 5.22   | 5.21   | 5.21   |
| I <sub>P</sub> (MA)                  | 0.80   | 0.82   | 1.02   | 1.04   | 1.03   |
| $\vec{n}_{e}(10^{19} \text{m}^{-3})$ | 9.73   | 14.40  | 39.10  | 29.80  | 28.50  |
| Ž <sub>eff</sub>                     | 1.51   | 1.72   | 1.09   | 1.55   | 1.94   |
| P <sub>RF</sub> (MW)                 | 1.04   | 2.56   | 2.46   | 2.26   | 2.11   |
| $\tau_{\rm E}^{\rm th}({\rm ms})$    | 25.00  | 33.00  | 64.00  | 65.00  | 77.00  |
| Diagnostic Time (s)                  | 0.86   | 0.93   | 0.90   | 0.75   | 0.87   |





# **Turbulence Suppression Mechanisms Are Essential in Understanding ITB Formation**

- Two transport suppression mechanisms are known to be essential in reproducing the ITB formation in DIII-D NCS, JET OS, and TFTR ERS discharges in simulations using the GLF23 model
  - 🚥 ExB shear stabilization
  - Shafranov shift stabilization ( $\alpha$ -stabilization)







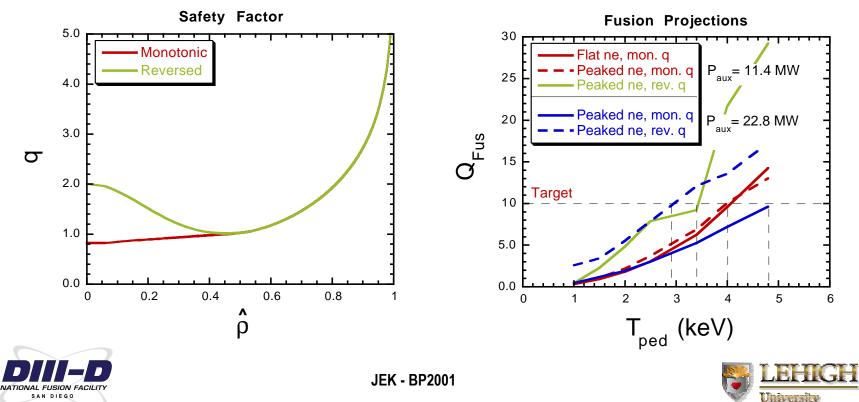
#### **Predictive Modeling of Burning Plasma Devices**

- Transport simulations using GLF23 model have been carried out for various burning plasma designs
  - Temperature profiles predicted while computing the effects of ExB shear and alpha-stabilization
  - Densities, equilibrium, sources(except alpha heating), and sinks taken as inputs from analysis codes
  - XPTOR parallel transport code
- Fusion power predicted for a range of pedestal temperatures in IGNITOR, FIRE, and ITER-FEAT
- Impact of reversed q-profile and alpha-stabilization studied
  - **ExB** shear effects expected to be small large toroidal field and low rotation velocities



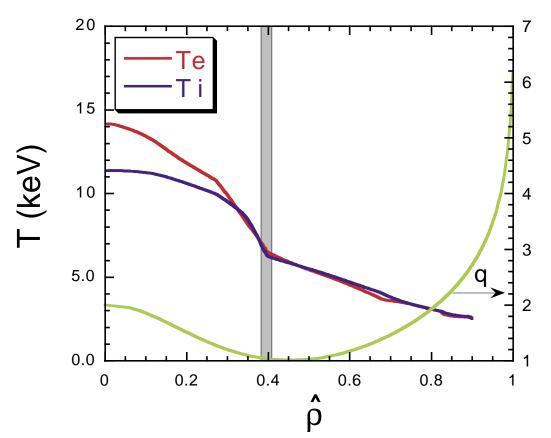


### **Burning Plasma Design Parameters**


| Physical Qty                                          | IGNITOR | FIRE | ITER-FEAT |
|-------------------------------------------------------|---------|------|-----------|
| R (m)                                                 | 1.33    | 2.14 | 6.20      |
| a (m)                                                 | 0.46    | 0.60 | 2.00      |
| κ                                                     | 1.80    | 1.80 | 1.78      |
| δ                                                     | 0.40    | 0.40 | 0.40      |
| B <sub>T</sub> (T)                                    | 13.0    | 10.0 | 5.30      |
|                                                       | 12.0    | 7.70 | 15.0      |
| $\bar{n}_{e}^{P}$ (10 <sup>20</sup> m <sup>-3</sup> ) | 4.70    | 4.90 | 1.03      |
| Z <sub>eff</sub>                                      | 1.20    | 1.41 | 1.70      |
| P <sub>Aux</sub> (MW)                                 | 10.0    | 11.4 | 50.0      |
| $P_{\Omega}^{(MW)}$                                   | 5.90    | 1.65 | 1.00      |
| P <sub>Rad</sub> (MW)                                 | 0.86    | 9.20 | 22.0      |
| Q <sub>Fus</sub> - Target                             | 8.60    | 10.0 | 10.0      |



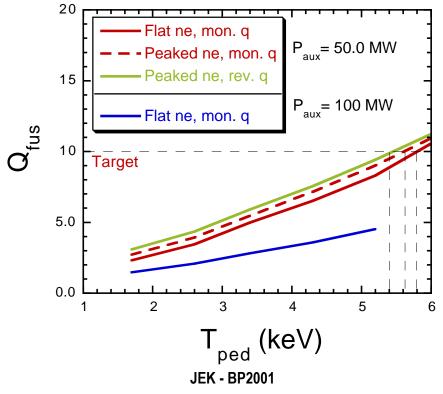



**Temperature profiles predicted for monotonic and reversed** *q-profiles while computing the effects of ExB shear and alpha-stabilization* 

- n<sub>ped</sub> = 3.6x10<sup>20</sup> m<sup>-3</sup>, n<sub>e0</sub> /n<sub>ped</sub> = 1.5
- ExB shear effects small since no toroidal rotation except for peaked density, reversed shear case where ITB develops
- Alpha heating computed using TRANSP reaction rates



GLF23 Predicts an ITB In FIRE as a Result of Alpha-stabilization of the ITG Mode

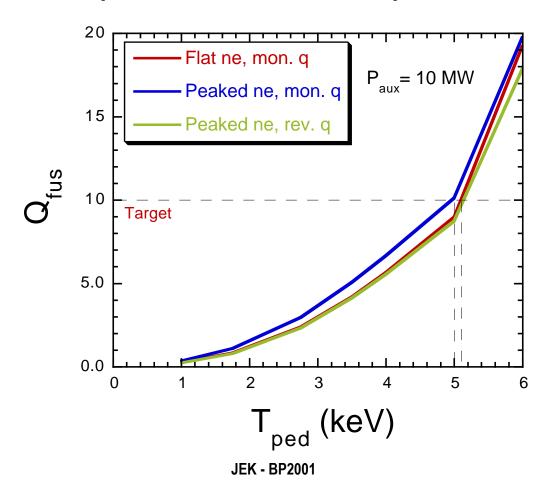

Barrier only forms if some density peaking is present
Diamagnetic component of ExB shear helps after ITB is formed







- A pedestal temperature of 5.75 keV is needed in ITER-FEAT to attain the Q=10 target for a flat density profile
  - n<sub>ped</sub> = 1.03x10<sup>20</sup> m<sup>-3</sup>, n<sub>e0</sub> /n<sub>ped</sub> = 1.0
  - Some benefit from reversed magnetic shear and peaked density profile is evident w/ T<sub>ped</sub> reduced to 5.4 kev for Q=10
  - Increasing P<sub>NBI</sub> from 50 to 100 MW increases fusion power, but reduces Q significantly








IGNITOR requires a pedestal temperature of 5.0 keV for Q=10 and can attain Q=5 at a T<sub>ped</sub> =3.75 keV

Base case: n<sub>ped</sub> = 4.62x10<sup>20</sup> m<sup>-3</sup>, n<sub>e0</sub> /n<sub>ped</sub> = 1.0





#### **Pedestal Temperature Requirements for Q=10**

| Device      | Flat ne <sup>+</sup> | Peaked ne* | Peaked ne w/ reversed q |
|-------------|----------------------|------------|-------------------------|
| IGNITOR*    | 5.1                  | 5.0        | 5.1                     |
| FIRE        | 4.1                  | 4.0        | 3.4                     |
| ITER-FEAT + | 5.8                  | 5.6        | 5.4                     |

• flat density cases have monotonic safety factor profile

\* 
$$n_{eo}^{\prime}/n_{ped}^{\prime}$$
 = 1.5 with  $n_{ped}^{\prime}$  held fixed from flat density case

- ✤ 10 MW auxiliary heating
  - 11.4 MW auxiliary heating
- ✤ 50 MW auxiliary heating





- The GLF23 transport model has been tested against a large profile database including nearly a 100 L-, H-mode and ITB discharges with an RMS error of nearly 13%
  - Predicts temperature and toroidal velocity profiles in discharges with ITBs resulting from ExB shear and alpha-stabilization of ITG/TEM/ETG modes
  - Alpha-stabilization can be an important ingredient in obtaining ITBs in the electron and ion channels of reversed shear discharges
- The fusion power gain Q<sub>fus</sub> has been predicted for a range of pedestal temperatures in IGNITOR, FIRE, and ITER-FEAT.
- Reversed shear and modest density peaking can lead to an ITB driven by alpha-stabilization
  - Required T<sub>ped</sub> reduced from 4.1 to 3.4 keV in FIRE and from 5.8 to 5.4 keV for Q<sub>fus</sub>=10 target in ITER-FEAT
  - ITB aided by diamagnetic component of ExB shear
  - Little or no benefit to confinement from reversed magnetic shear for flat density profiles cases
  - Fusion power for IGNITOR insensitive to moderate density peaking and reversed magnetic shear



